GEORGIA TECH INFORMATION SECURITY CENTER

Safeguarding Digital Infomation Through Innovative Research and Education

Ether

Malware Analysis via Hardware
Virtualization Extensions

Artem Dinaburg’t, Paul Royal®", Monirul Sharift and
Wenke Leet”

‘Georgia Institute of Technology
TDamballa

ACM CCS 2008

Agenda

® Motivation
— The malware problem

® The Ether Framework

— Transparency and transparent
malware analysis

® Evaluation

— Comparing Ether to current
approaches

® Conclusion

The Malware Problem

® A centerpiece of current security
threats

— Botnets

— Spam

— Information Theft
— Financial Fraud

® Real Criminals
— Criminal infrastructure
— Domain of organized crime

Malware Analysis

® There is a profound need to
understand malware behavior

— Forensics and Asset Remediation
— C&C Detection
— Threat Analysis

® Malware authors make analysis
very challenging
— Direct financial motivation

Two Types of Malware
Analysis

® Static Analysis
— What a program would do
— Complete view of program behavior

— Requires accurate disassembly of x86
machine code

— Often impossible to do in practice
® Dynamic Analysis

— Shows what a program actually did when
executed

— Only gives a partial view of program
behavior

— Misses trigger based actions
— How do you hide your analyzer?

The Malware Uncertainty Principle

® An important practical problem

® Observer affecting the observed
environment

® Robust and detailed analyzers are
typically invasive
— In-memory presence
— Hooks
— CPU Emulation

® Malware will refuse to run

The Malware Uncertainty
Principle, Commercialized

—Anti-Debugging

[V Arti Virtual PC Terminate server, if it is being started on..

v Anti VMWare .
v YMWare
v Anti VirtualBox

v Morman Sandbox
[V Try bypass SandBoxs v

methods: v Debugged mode
01 - Sandhoxie [V Sandboxie
02 - ThreatExpert |7 Virtual PC
03 - Anubis
v Symantec Altiris S¥S
04 - CWSandbox
[v innotek VirtualBox (unstable)
05 - JoeBox

06 - Norman Sandbox

v Try to Unhook Userland API Hooks

® Dynamic analyzer detection is a
standard malware feature

Explaining the Malware
Uncertainty Principle

® Why such a high detection rate?

® Detection of In-Guest presence
— PolyUnpack, CWSandbox

® Detection of Whole-System
emulation

— Anubis, Renovo

® Detection of APl Emulation
— Norman Sandbox

Contributions

® Transparency
— The theory

® Ether: A transparent malware
analysis platform
— The implementation

® An externally reproducible
evaluation of our results
— Source Code
— Malware Samples

Solving the Malware Uncertainty
Principle
® An analyzer’s aim should be

transparency.
— Defining transparency
® The execution of the malware and

the malware analyzer is governed
by the principle of non-interference.

Transparency Requirements

® Higher Privilege
® No non-privileged side effects

® Same instruction execution
semantics

® |[dentical exception handling
® Identical notion of time

— Malware Analysis Services

® Fine grained (instruction by instruction)
tracing

— Dynamic taint analysis
— Automated unpacking
— Multipath exploration

Additional Analyzer Requirements
® Semantic information
— Process names, system call arguments, etc.
® Coarse grained (system call level) tracing
— Behavioral anti-virus

Fulfilling Transparency

Requirements
® Debugging API

— In-guest presence
— Exception Handling

® Reduced Privilege Guests
(VMWare, etc)

— Non-privileged side effects
® Emulation (QEMU, Simics)

— Instruction execution semantics

transparency features
— External

— Capable

— Equivalent

® Poses complex analysis challenges
— Different goals

Fulfilling Transparency
w Requirements
® ldea: Use hardware assisted
virtualization
® Provides several attractive

Challenges

® A transparent yet functional
malware analyzer

® Use features of Intel VT in novel
ways to achieve:
— Guest memory analysis
— Coarse grained tracing
— Fine grained tracing

® Maintaining transparency

The Ether Framework
DomO
Eth DomU . DomU
U e (Windows (Windows
serspace Guest) Guest)
Component
A
|
|
" _ - ___ | Ether Hypervisor Component Xen
CPU / Hardware

Detecting Ether

® Detecting Intel VT
— Increasingly irrelevant
— Not the same
® Timing attacks
— Network-based clock sources
— Nothing we can really do

® Memory Hierarchy Attacks
— Use AMD...

About EtherTrace

® An implementation of a coarse grained
tracer using the Ether framework

® Traces the Windows equivalent of
system calls (Native API)
— Concept extends to other OSes

® Information Provided:
— Call name
— Typed arguments
— Return values

— Context (Process ID, Thread ID)

About EtherUnpack

® Precision universal automated unpacker

® Uses instruction-by-instruction tracing

(fine grained tracing) to detect unpack
execute behavior

® If code written is later executed, unpack-
execution occurred

— First proposed in Renovo
® Able to handle multiple packing layers

® Dumps unpacked memory images to
disk

Obfuscation Tool Distribution

nPack
NsPack

0
K\
Yoda's Prot

PKLITE32__ 2%
2% \
tElock

2%
WinUPack

2%
° ASProtect
3%

® Examine trace logs for expected actions
— File
— Registry

Evaluation: EtherTrace
Known Obf.lrjjglastion

Evaluation: EtherTrace

Anubis Norman

“ Untested "ICan Trace E Cannot Trace

® Obfuscation tools traced ranked by
popularity

Evaluation: EtherTrace

“ Untested "1Can Trace E Cannot Trace

® Ether is more transparent

— Not at entry point
— On code path

Evaluation: EtherUnpack
Automated A-
Unpackers
® Looked for a 32 byte string present in the
original code section
® Not a random string
— Avoid API calls

Evaluation: EtherUnpack

Automated Unpacking: Renovo Automated Unpacking: PolyUnpack

E Armadillo OThemida

E Obsidium uUPX

I PECompact IFSG

[Aspack [Asprotect

H'WinUPack I'Yoda’s Prot

O MEW X' Molebox

I Morphine CIUPX S
MEW

! /
2%
Themida
Asprotect 8%
3%
PECompact
5% Yoda’s Prot WinUPack

2%

"/ Can Unpack [Cannot Unpack

® Obfuscation tools unpacked ranked by
popularity

@ Armadillo
EThemida

E PECompact
E Aspack

E WinUPack
EYoda’s Prot
E Molebox

[Obsidium
uPX

IFSG

[Asprotect
CMEW

I Morphine
UPX S

Evaluation: EtherUnpack

Automated Unpacking: EtherUnpack

[Armadillo
FTUPX
I Themida

Armadillo
29%

I PECompact
IFSG
[Aspack

[Asprotect
E'WinUPack
[Yoda's Prot
CMEW

' Molebox
I Morphine
21 Obsidium
JUPX S

PECompact
5%

"/ Can Unpack E Cannot Unpack

® Ether Is more transparent

Conclusion

® An inadequacy of current tools
® Theoretically, we can do better

® Ether is an implementation of a
different approach

® Evaluation confirms Ether is more
transparent

Questions?

Source code and samples
available at:

http://ether.gtisc.gatech.edu

